Identification of the Substrate Recognition and Transport Pathway in a Eukaryotic Member of the Nucleobase-Ascorbate Transporter (NAT) Family

نویسندگان

  • Vasiliki Kosti
  • George Lambrinidis
  • Vassilios Myrianthopoulos
  • George Diallinas
  • Emmanuel Mikros
چکیده

Using the crystal structure of the uracil transporter UraA of Escherichia coli, we constructed a 3D model of the Aspergillus nidulans uric acid-xanthine/H(+) symporter UapA, which is a prototype member of the Nucleobase-Ascorbate Transporter (NAT) family. The model consists of 14 transmembrane segments (TMSs) divided into a core and a gate domain, the later being distinctly different from that of UraA. By implementing Molecular Mechanics (MM) simulations and quantitative structure-activity relationship (SAR) approaches, we propose a model for the xanthine-UapA complex where the substrate binding site is formed by the polar side chains of residues E356 (TMS8) and Q408 (TMS10) and the backbones of A407 (TMS10) and F155 (TMS3). In addition, our model shows several polar interactions between TMS1-TMS10, TMS1-TMS3, TMS8-TMS10, which seem critical for UapA transport activity. Using extensive docking calculations we identify a cytoplasm-facing substrate trajectory (D360, A363, G411, T416, R417, V463 and A469) connecting the proposed substrate binding site with the cytoplasm, as well as, a possible outward-facing gate leading towards the substrate major binding site. Most importantly, re-evaluation of the plethora of available and analysis of a number of herein constructed UapA mutations strongly supports the UapA structural model. Furthermore, modeling and docking approaches with mammalian NAT homologues provided a molecular rationale on how specificity in this family of carriers might be determined, and further support the importance of selectivity gates acting independently from the major central substrate binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ.

The nucleobase-ascorbate transporter or nucleobase-cation symporter-2 (NAT/NCS2) family is one of the five known families of transporters that use nucleobases as their principal substrates and the only one that is evolutionarily conserved and widespread in all major taxa of organisms. The family is a typical paradigm of a group of related transporters for which conservation in sequence and over...

متن کامل

Cysteine-scanning analysis of the nucleobase-ascorbate transporter signature motif in YgfO permease of Escherichia coli: Gln-324 and Asn-325 are essential, and Ile-329-Val-339 form an alpha-helix.

The nucleobase-ascorbate transporter (NAT) signature motif is a conserved sequence motif of the ubiquitous NAT/NCS2 family implicated in defining the function and selectivity of purine translocation pathway in the major fungal homolog UapA. To analyze the role of NAT motif more systematically, we employed Cys-scanning mutagenesis of the Escherichia coli xanthine-specific homolog YgfO. Using a f...

متن کامل

Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers.

Boron is essential for plant growth because of its incorporation into plant cell walls; however, in excess it is toxic to plants. Boron transport and homeostasis in plants is regulated in part by the borate efflux transporter Bor1, a member of the solute carrier (SLC) 4 transporter family with homology to the human bicarbonate transporter Band 3. Here, we present the 4.1-Å resolution crystal st...

متن کامل

Functional Characterization of Two Putative Nucleobase Transporters in Arabidopsis Using Heterologous Complementation in Yeast

Miller, Sara E. M.S., Purdue University, August 2012. Functional Characterization of Two Putative Nucleobase Transporters in Arabidopsis Using Heterologous Complementation in Yeast. Major Professor: George S. Mourad. To identify the substrate profile function for AtNAT5, one of the twelve members of the NAT/NCS2 gene family putatively identified to transport xanthine and/or uric acid, and to id...

متن کامل

The AzgA purine transporter of Aspergillus nidulans. Characterization of a protein belonging to a new phylogenetic cluster.

The azgA gene of Aspergillus nidulans encodes a hypoxanthine-adenine-guanine transporter. It has been cloned by a novel transposon methodology. The null phenotype of azgA was defined by a number of mutations, including a large deletion. In mycelia, the azgA gene is, like other genes of purine catabolism, induced by uric acid and repressed by ammonium. Its transcription depends on the pathway-sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012